INF-UFRGS at SemEval-2017 Task 5: A Supervised Identification of Sentiment Score in Tweets and Headlines
نویسندگان
چکیده
This paper describes a supervised solution for detecting the polarity scores of tweets or headline news in the financial domain, submitted to the SemEval 2017 Fine-Grained Sentiment Analysis on Financial Microblogs and News Task. The premise is that it is possible to understand market reaction over a company stock by measuring the positive/negative sentiment contained in the financial tweets and news headlines, where polarity is measured in a continuous scale ranging from -1.0 (very bearish) to 1.0 (very bullish). Our system receives as input the textual content of tweets or news headlines, together with their ids, stock cashtag or name of target company, and the polarity score gold standard for the training dataset. Our solution retrieves features from these text instances using n-gram, hashtags, sentiment score calculated by a external APIs and others features to train a regression model capable to detect continuous score of these sentiments with precision.
منابع مشابه
INF-UFRGS-OPINION-MINING at SemEval-2016 Task 6: Automatic Generation of a Training Corpus for Unsupervised Identification of Stance in Tweets
This paper describe a weakly supervised solution for detecting stance in tweets, submitted to the SemEval 2016 Stance Task. Our approach is based on the premise that stance can be exposed as positive or negative opinions, although not necessarily about the stance target itself. Our system receives as input ngrams representing opinion targets and common terms used to denote stance (e.g. hashtags...
متن کاملIBA-Sys at SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Financial Microblogs and News
This paper presents the details of our system IBA-Sys that participated in SemEval Task: Fine-grained sentiment analysis on Financial Microblogs and News. Our system participated in both tracks. For microblogs track, a supervised learning approach was adopted and the regressor was trained using XgBoost regression algorithm on lexicon features. For news headlines track, an ensemble of regressors...
متن کاملFEUP at SemEval-2017 Task 5: Predicting Sentiment Polarity and Intensity with Financial Word Embeddings
This paper presents the approach developed at the Faculty of Engineering of University of Porto, to participate in SemEval 2017, Task 5: Fine-grained Sentiment Analysis on Financial Microblogs and News. The task consisted in predicting a real continuous variable from -1.0 to +1.0 representing the polarity and intensity of sentiment concerning companies/stocks mentioned in short texts. We modele...
متن کاملDUTH at SemEval-2017 Task 5: Sentiment Predictability in Financial Microblogging and News Articles
We present the system developed by the team DUTH for the participation in Semeval-2017 task 5 Fine-Grained Sentiment Analysis on Financial Microblogs and News, in subtasks A and B. Our approach to determine the sentiment of Microblog Messages and News Statements & Headlines is based on linguistic preprocessing, feature engineering, and supervised machine learning techniques. To train our model,...
متن کاملTw-StAR at SemEval-2017 Task 4: Sentiment Classification of Arabic Tweets
In this paper, we present our contribution in SemEval 2017 international workshop. We have tackled task 4 entitled “Sentiment analysis in Twitter”, specifically subtask 4A-Arabic. We propose two Arabic sentiment classification models implemented using supervised and unsupervised learning strategies. In both models, Arabic tweets were preprocessed first then various schemes of bag-of-N-grams wer...
متن کامل